Properties of Knots from Polynomials

Ana Wright

April 13, 2023

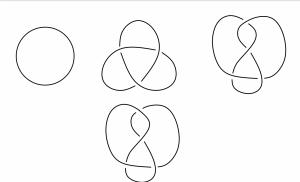
Definition

Definition

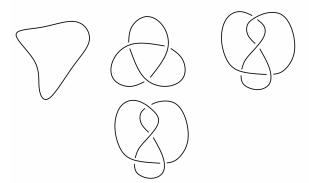
Definition

Definition

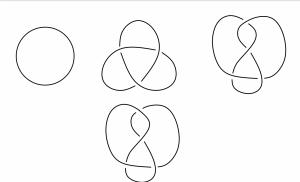
Definition



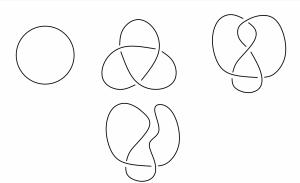
Definition



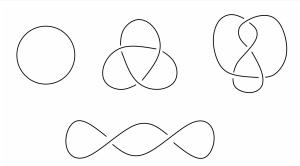
Definition



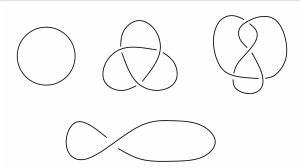
Definition



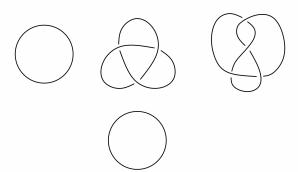
Definition



Definition

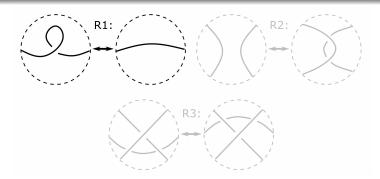


Definition

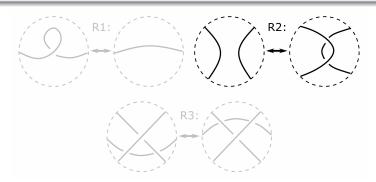


Theorem (Reidemeister, 1927. Independently, Alexander and Briggs, 1926)

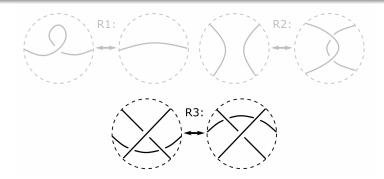
Theorem (Reidemeister, 1927. Independently, Alexander and Briggs, 1926)



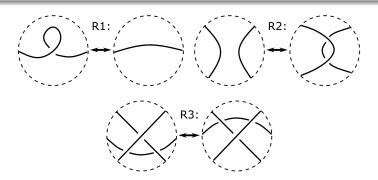
Theorem (Reidemeister, 1927. Independently, Alexander and Briggs, 1926)



Theorem (Reidemeister, 1927. Independently, Alexander and Briggs, 1926)



Theorem (Reidemeister, 1927. Independently, Alexander and Briggs, 1926)



Knot Invariant

Definition

A **knot invariant** is a function f from the set of all knots K to a set S such that if two knots K and K' are equivalent, then f(K) = f(K').

Type I: A property of knot diagrams which is invariant over continuous deformations.

Type II: A "measurement" which is minimized over all diagrams of a knot.

Type I Invariant Example

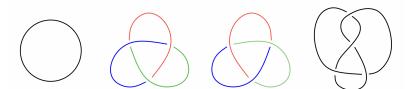
Definition

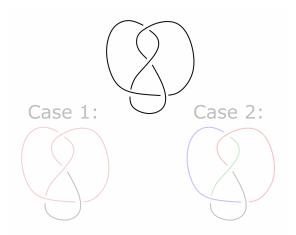
A knot diagram is **tricolorable** if the strands can be colored using exactly three colors such that every crossing uses either the same color for all three strands or all different colors.

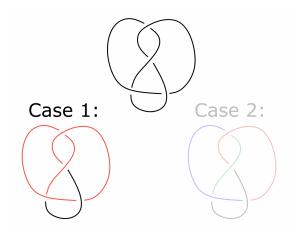
Type I Invariant Example

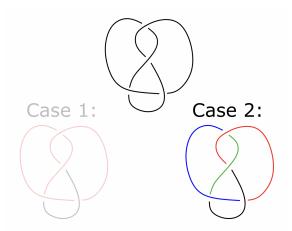
Definition

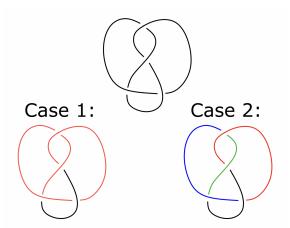
A knot diagram is **tricolorable** if the strands can be colored using exactly three colors such that every crossing uses either the same color for all three strands or all different colors.



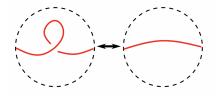




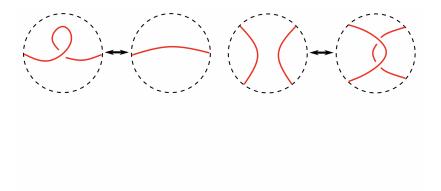




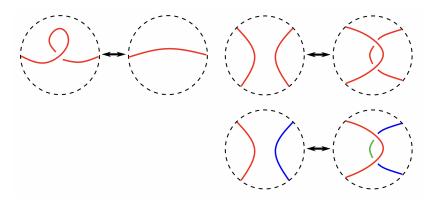
Tricolorability is preserved by R-moves.

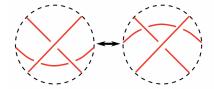


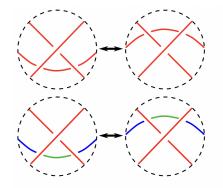
Tricolorability is preserved by R-moves.

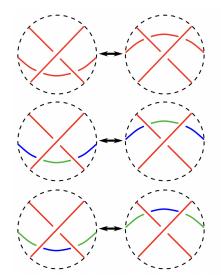


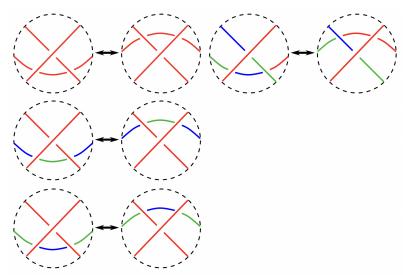
Tricolorability is preserved by R-moves.

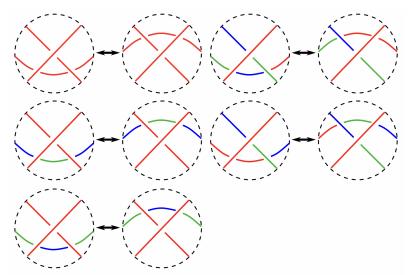


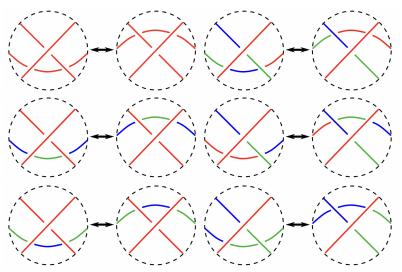








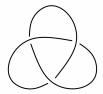


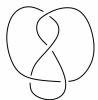


Type II Invariant Example

Definition

The **crossing number** of a knot K is the minimum number of crossings in any diagram of K.



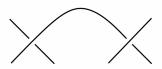


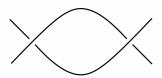
Crossing Number

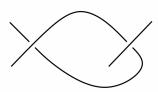
Every knot diagram with exactly one crossing is a diagram of the unknot.

Crossing Number

Every knot diagram with exactly one crossing is a diagram of the unknot.



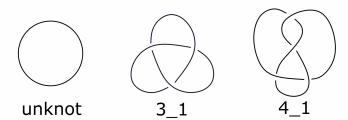




Type II Invariant Example

Definition

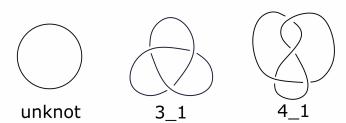
The **crossing number** of a knot K is the minimum number of crossings in any diagram of K.



Type II Invariant Example

Definition

The **unknotting number** of a knot K is the minimum number of crossing changes required to transform K into the unknot.



Our Invariants So Far

	unknot	3_1	4_1
Tricolorable?	No	Yes	No
Crossing Number	0	3	4
Unknotting Number	0	1	1

Type I Invariant: Alexander Polynomial

Each knot K has an assigned Alexander polynomial $\triangle_K(t)$.

К	$ riangle_{\kappa}(t)$
	1
3_1 🕥	$t - 1 + t^{-1}$
4_1 (3)	$t - 3 + t^{-1}$
5_1	$t^2 - t + 1 - t^{-1} + t^{-2}$
5_2	$2t - 3 + 2t^{-1}$

Type I Invariant: Alexander Polynomial

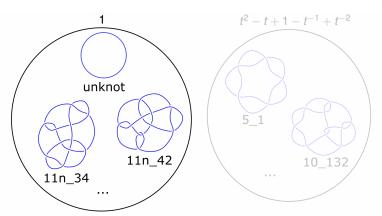
The set of Alexander polynomials are the Laurent polynomials (polynomials where powers of *t* can be negative) with integer coefficients where

- $\triangle_K(1) = \pm 1$ and
- $\bullet \ \triangle_{\mathcal{K}}(t^{-1}) = \triangle_{\mathcal{K}}(t)$

κ	$\triangle_{\mathcal{K}}(t)$
	1
3_1	$t - 1 + t^{-1}$
4_1 (3)	$t - 3 + t^{-1}$
5_1	$t^2 - t + 1 - t^{-1} + t^{-2}$
5_2	$2t - 3 + 2t^{-1}$

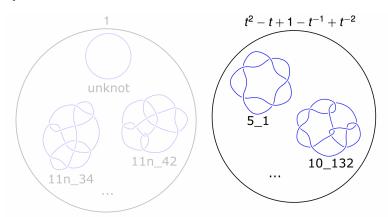
Alexander Polynomial

There are infinitely many knots realizing each Alexander polynomial.



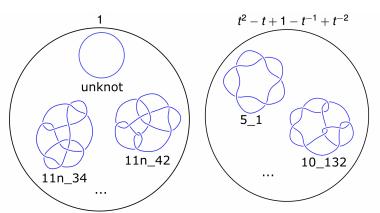
Alexander Polynomial

There are infinitely many knots realizing each Alexander polynomial.



Alexander Polynomial

There are infinitely many knots realizing each Alexander polynomial.



Alexander Polynomial and Crossing Changes

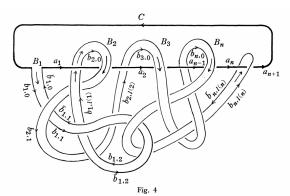
Theorem (Kondo, 1978)

For any Alexander polynomial p(t), there exists a knot K with unknotting number one such that $\triangle_K(t) = p(t)$.

Alexander Polynomial and Crossing Changes

Theorem (Kondo, 1978)

For any Alexander polynomial p(t), there exists a knot K with unknotting number one such that $\triangle_K(t) = p(t)$.



Alexander polynomials and crossing changes

Definition

A **complete Alexander neighbor** is a knot K such that every possible Alexander polynomial is realized by a knot K' one crossing change away from K.

Question: Does there exist a complete Alexander neighbor with nontrivial Alexander polynomial?

Answer: I don't know yet! However, there are ways to narrow down the list of possible knots.

Alexander polynomials and crossing changes

Definition

A **complete Alexander neighbor** is a knot K such that every possible Alexander polynomial is realized by a knot K' one crossing change away from K.

Question: Does there exist a complete Alexander neighbor with nontrivial Alexander polynomial?

Answer: I don't know yet! However, there are ways to narrow down the list of possible knots.

Alexander polynomials and crossing changes

Definition

A **complete Alexander neighbor** is a knot K such that every possible Alexander polynomial is realized by a knot K' one crossing change away from K.

Question: Does there exist a complete Alexander neighbor with nontrivial Alexander polynomial?

Answer: I don't know yet! However, there are ways to narrow down the list of possible knots.

Complete Alexander Neighbor

First, if a knot K has algebraic unknotting number greater than one, K is not a complete Alexander neighbor.

Theorem (A. W.)

Let K be a knot with unknotting number 1, where $|\triangle_K(-1)| \ge 3$ and where $|\triangle_K(-1)|$ is composite or $|\triangle_K(-1)| \equiv 1 \mod 4$. Then K is not a complete Alexander neighbor.

Corollary (A. W.)

Let K be a knot with a breadth 2 Alexander polynomial $\triangle_K(t) = n(t+t^{-1}) + 1 - 2n$. If K has unknotting number one or 1-4n is not a square, then K is not a complete Alexander neighbor.

Complete Alexander Neighbor

First, if a knot K has algebraic unknotting number greater than one, K is not a complete Alexander neighbor.

Theorem (A. W.)

Let K be a knot with unknotting number 1, where $|\triangle_K(-1)| \ge 3$ and where $|\triangle_K(-1)|$ is composite or $|\triangle_K(-1)| \equiv 1 \mod 4$. Then K is not a complete Alexander neighbor.

Corollary (A. W.)

Let K be a knot with a breadth 2 Alexander polynomial $\triangle_K(t) = n(t+t^{-1}) + 1 - 2n$. If K has unknotting number one or 1-4n is not a square, then K is not a complete Alexander neighbor.

Complete Alexander Neighbor

First, if a knot K has algebraic unknotting number greater than one, K is not a complete Alexander neighbor.

Theorem (A. W.)

Let K be a knot with unknotting number 1, where $|\triangle_K(-1)| \ge 3$ and where $|\triangle_K(-1)|$ is composite or $|\triangle_K(-1)| \equiv 1 \mod 4$. Then K is not a complete Alexander neighbor.

Corollary (A. W.)

Let K be a knot with a breadth 2 Alexander polynomial $\triangle_K(t) = n(t+t^{-1}) + 1 - 2n$. If K has unknotting number one or 1-4n is not a square, then K is not a complete Alexander neighbor.

Unknotting Number

Theorem (Nakanishi & Okada, 2012)

Let K and K' be knots one crossing change apart. If K has unknotting number 1, then $|\triangle_{K'}(-1)| \equiv \pm n^2 \mod |\triangle_K(-1)|$ for some integer n.

Theorem (A. W.

The five knots below have unknotting number greater than one

Unknotting Number

Theorem (Nakanishi & Okada, 2012)

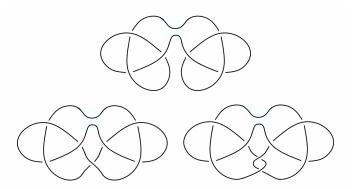
Let K and K' be knots one crossing change apart. If K has unknotting number 1, then $|\triangle_{K'}(-1)| \equiv \pm n^2 \mod |\triangle_K(-1)|$ for some integer n.

Theorem (A. W.)

The five knots below have unknotting number greater than one.

Polymath Jr. Project

A **symmetric union presentation** of a knot K is a diagram of K built from a smaller knot (called a **partial knot** of K) joined with its mirror image.



Polymath Jr. Project

Theorem (Ben Clingenpeel, Zongzheng (Jason) Dai, Gabriel Diraviam, Kareem Jaber, Ziyun Liu, Teo Miklethun, Haritha N, Michael Perry, Moses Samuelson-Lynn, Eli Seamans, Krishnendu Kar, Nicole Xie, Ruiqi Zou, A. W., Alex Zupan)

There exist knots K_1 and K_2 such that $|\triangle_{K_1}(-1)| = |\triangle_{K_2}(-1)|$, but they are not both partial knots of any knot K.

