Properties of Knots from Polynomials

Ana Wright

April 13, 2023

Definition

A **knot** is a closed loop in three-dimensional space, considered the same up to continuous deformations where the loop may not break or pass through itself.

∢ ∃)

Definition

A **knot** is a closed loop in three-dimensional space, considered the same up to continuous deformations where the loop may not break or pass through itself.

Definition

A **knot** is a closed loop in three-dimensional space, considered the same up to continuous deformations where the loop may not break or pass through itself.

Definition

A **knot** is a closed loop in three-dimensional space, considered the same up to continuous deformations where the loop may not break or pass through itself.

 $2Q$

Definition

A **knot** is a closed loop in three-dimensional space, considered the same up to continuous deformations where the loop may not break or pass through itself.

Definition

A **knot** is a closed loop in three-dimensional space, considered the same up to continuous deformations where the loop may not break or pass through itself.

Definition

A **knot** is a closed loop in three-dimensional space, considered the same up to continuous deformations where the loop may not break or pass through itself.

Definition

A **knot** is a closed loop in three-dimensional space, considered the same up to continuous deformations where the loop may not break or pass through itself.

Definition

A **knot** is a closed loop in three-dimensional space, considered the same up to continuous deformations where the loop may not break or pass through itself.

Definition

A **knot** is a closed loop in three-dimensional space, considered the same up to continuous deformations where the loop may not break or pass through itself.

Definition

A **knot** is a closed loop in three-dimensional space, considered the same up to continuous deformations where the loop may not break or pass through itself.

Theorem (Reidemeister, 1927. Independently, Alexander and Briggs, 1926)

Two knot diagrams are of the same knot if and only if one diagram can be transformed into the other through a series of the following Reidemeister moves and planar isotopies.

Theorem (Reidemeister, 1927. Independently, Alexander and Briggs, 1926)

Two knot diagrams are of the same knot if and only if one diagram can be transformed into the other through a series of the following Reidemeister moves and planar isotopies.

റെ ര

Theorem (Reidemeister, 1927. Independently, Alexander and Briggs, 1926)

Two knot diagrams are of the same knot if and only if one diagram can be transformed into the other through a series of the following Reidemeister moves and planar isotopies.

റെ ര

Theorem (Reidemeister, 1927. Independently, Alexander and Briggs, 1926)

Two knot diagrams are of the same knot if and only if one diagram can be transformed into the other through a series of the following Reidemeister moves and planar isotopies.

م ه د

Theorem (Reidemeister, 1927. Independently, Alexander and Briggs, 1926)

Two knot diagrams are of the same knot if and only if one diagram can be transformed into the other through a series of the following Reidemeister moves and planar isotopies.

Knot Invariant

Definition

A **knot invariant** is a function *f* from the set of all knots K to a set *S* such that if two knots *K* and *K* ′ are equivalent, then $f(K) = f(K')$.

Type I: A property of knot diagrams which is invariant over continuous deformations.

Type II: A "measurement" which is minimized over all diagrams of a knot.

KORK ERKER ADAM ADA

Type I Invariant Example

Definition

A knot diagram is **tricolorable** if the strands can be colored using exactly three colors such that every crossing uses either the same color for all three strands or all different colors.

Type I Invariant Example

Definition

A knot diagram is **tricolorable** if the strands can be colored using exactly three colors such that every crossing uses either the same color for all three strands or all different colors.

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$

The figure-eight knot is not tricolorable.

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

Tricolorability is preserved by R-moves.

K ロ ⊁ K 個 ≯ K 重 ≯ K 重 ≯ …重

 ORO

Tricolorability is preserved by R-moves.

Tricolorability is preserved by R-moves.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ 299

(ロ)→(個)→(理)→(理)→ \Rightarrow $2Q$

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ă $2Q$

 Ω 4 17 18

Type II Invariant Example

Definition

The **crossing number** of a knot *K* is the minimum number of crossings in any diagram of *K*.

Every knot diagram with exactly one crossing is a diagram of the unknot.

Every knot diagram with exactly one crossing is a diagram of the unknot.

Every knot diagram with exactly one crossing is a diagram of the unknot.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할 수 있어)

Every knot diagram with exactly two crossings is a diagram of the unknot.

Every knot diagram with exactly two crossings is a diagram of the unknot.

Every knot diagram with exactly two crossings is a diagram of the unknot.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 → 9 Q @

Every knot diagram with exactly two crossings is a diagram of the unknot.

Every knot diagram with exactly two crossings is a diagram of the unknot.

Type II Invariant Example

Definition

The **crossing number** of a knot *K* is the minimum number of crossings in any diagram of *K*.

Type II Invariant Example

Definition

The **unknotting number** of a knot *K* is the minimum number of crossing changes required to transform *K* into the unknot.

Our Invariants So Far

KID KARA KE KA E KO GO

Type I Invariant: Alexander Polynomial

Each knot *K* has an assigned Alexander polynomial $\Delta_K(t)$.

Type I Invariant: Alexander Polynomial

The set of Alexander polynomials are the Laurent polynomials (polynomials where powers of *t* can be negative) with integer coefficients where

•
$$
\triangle_K(1) = \pm 1
$$
 and

$$
\bullet \triangle_K(t^{-1}) = \triangle_K(t)
$$

KORK ERKER ADAM ADA

Alexander Polynomial

There are infinitely many knots realizing each Alexander polynomial.

Alexander Polynomial

There are infinitely many knots realizing each Alexander polynomial.

Alexander Polynomial

There are infinitely many knots realizing each Alexander polynomial.

Alexander Polynomial and Crossing Changes

Theorem (Kondo, 1978)

For any Alexander polynomial p(*t*)*, there exists a knot K with unknotting number one such that* $\triangle_K(t) = p(t)$ *.*

Alexander Polynomial and Crossing Changes

Theorem (Kondo, 1978)

For any Alexander polynomial p(*t*)*, there exists a knot K with unknotting number one such that* $\Delta_K(t) = p(t)$ *.*

Fig. 4

(ロトメ団) (主) (主)

 \equiv

Alexander polynomials and crossing changes

Definition

A **complete Alexander neighbor** is a knot *K* such that every possible Alexander polynomial is realized by a knot *K* ′ one crossing change away from *K*.

Question: Does there exist a complete Alexander neighbor

Answer: I don't know yet! However, there are ways to narrow

←ロ ▶ ← 伊 ▶ ← ミ ▶ ← ミ ▶ │ ミ

Alexander polynomials and crossing changes

Definition

A **complete Alexander neighbor** is a knot *K* such that every possible Alexander polynomial is realized by a knot *K* ′ one crossing change away from *K*.

Question: Does there exist a complete Alexander neighbor with nontrivial Alexander polynomial?

Answer: I don't know yet! However, there are ways to narrow

Alexander polynomials and crossing changes

Definition

A **complete Alexander neighbor** is a knot *K* such that every possible Alexander polynomial is realized by a knot *K* ′ one crossing change away from *K*.

Question: Does there exist a complete Alexander neighbor with nontrivial Alexander polynomial?

Answer: I don't know yet! However, there are ways to narrow down the list of possible knots.

KORK ERKER ADAM ADA

First, if a knot *K* has algebraic unknotting number greater than one, *K* is not a complete Alexander neighbor.

Let K be a knot with unknotting number 1, where $|\Delta_K(-1)| > 3$ *and where* $|\Delta_K(-1)|$ *is composite or* $|\Delta_K(-1)| \equiv 1 \mod 4$.

 $\triangle_K(t) = n(t+t^{-1}) + 1 - 2n.$ If K has unknotting number one or 1 − 4*n is not a square, then K is not a complete Alexander*

university-logo-udel

First, if a knot *K* has algebraic unknotting number greater than one, *K* is not a complete Alexander neighbor.

Theorem (A. W.)

Let K be a knot with unknotting number 1, where $|\Delta_K(-1)| > 3$ *and where* $|\Delta_K(-1)|$ *is composite or* $|\Delta_K(-1)| \equiv 1 \mod 4$. *Then K is not a complete Alexander neighbor.*

 $\triangle_K(t) = n(t+t^{-1}) + 1 - 2n.$ If K has unknotting number one or 1 − 4*n is not a square, then K is not a complete Alexander*

university-logo-udel

First, if a knot *K* has algebraic unknotting number greater than one, *K* is not a complete Alexander neighbor.

Theorem (A. W.)

Let K be a knot with unknotting number 1, where $|\triangle_K(-1)| \geq 3$ *and where* $|\Delta_K(-1)|$ *is composite or* $|\Delta_K(-1)| \equiv 1 \mod 4$. *Then K is not a complete Alexander neighbor.*

Corollary (A. W.)

Let K be a knot with a breadth 2 Alexander polynomial $\triangle_K(t) = n(t+t^{-1}) + 1 - 2n$. If K has unknotting number one or 1 − 4*n is not a square, then K is not a complete Alexander neighbor.*

university-logo-udel

Unknotting Number

Theorem (Nakanishi & Okada, 2012)

Let K and K′ *be knots one crossing change apart. If K has* $|$ *unknotting number 1, then* $|\triangle_{K'}(-1)| \equiv \pm n^2 \mod |\triangle_K(-1)|$ *for some integer n.*

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$ 2990

Unknotting Number

Theorem (Nakanishi & Okada, 2012)

Let K and K′ *be knots one crossing change apart. If K has* $|$ *unknotting number 1, then* $|\triangle_{K'}(-1)| \equiv \pm n^2 \mod |\triangle_K(-1)|$ *for some integer n.*

Theorem (A. W.)

The five knots below have unknotting number greater than one.

◆ ロ → イラ → イヨ → イヨ → ニヨ

 -990

Polymath Jr. Project

A **symmetric union presentation** of a knot *K* is a diagram of *K* built from a smaller knot (called a **partial knot** of *K*) joined with its mirror image.

Polymath Jr. Project

Theorem (Ben Clingenpeel, Zongzheng (Jason) Dai, Gabriel Diraviam, Kareem Jaber, Ziyun Liu, Teo Miklethun, Haritha N, Michael Perry, Moses Samuelson-Lynn, Eli Seamans, Krishnendu Kar, Nicole Xie, Ruiqi Zou, A. W., Alex Zupan)

*There exist knots K*₁ *and K*₂ *such that* $|\triangle_{K_1}(-1)| = |\triangle_{K_2}(-1)|$, *but they are not both partial knots of any knot K .*

